Since the cyclic α -alkoxy **TMEDA-organocopper reagent** was **shown** to give the l,4-addition product **5** with complete retention of configuration, the acyclic α -alkoxy TMEDA organocopper reagent 9 was also investigated. The organocopper reagent was prepared from the corresponding stannane of 98% *ee.* Addition to ethyl propiolate provided heptenoate **10** in 98% yield. Hydrogenation and acidic methanolysis directly produced pelargono lactone.³ Unfortunately, the lactone was obtained in only 18% ee.¹⁶ Therefore, generation of acyclic α -alkoxyorganocopper reagents in lieu of the higher order cuprate³ does not circumvent the problem of racemization. **Example 10 and Section 1. Bullion 1. Bullion**

The racemization of enantiopure higher order acyclic α -alkoxyorganocuprates was related to the formation of byproducts arising from oxidative dimerization.³ Interestingly, the organocopper reagents derived from 1a and **lb** showed no tendency toward dimerization. One other example of a 1,4-addition reaction of an enantiopure organocopper reagent with retention of configuration has been reported.¹⁸ These data indicate that cyclic higher order cuprates and organocopper species are chemically distinct.¹⁹ The mechanistic details of $1,4$ -addition reac-

 (16) 11 α _n observed +8.3°, $c = 2.4$ (CH₂Cl₂) [lit¹⁷ +44.6°, $c = 2.4$ **(CHdW1. (17) Font, J.; Cardellach,** J.; **Ortuno, R. M.** *J.* **Heterocycl.** *Chem.* **1984,**

21, 327–331.

(18) Fuche, P. L.; Hutchinson, D. K. *J. Am. Chem. SO~.* **1987,109, 4930-4939.**

(19) For a diecussion of the possible solution atructum of hqher order MO cupratea see: Liphutz, B. H.; Sharma, **S.; Ellsworth, E. L.** *J. Am. F hem. Soc.* **1990,112,4062-4064.**

tions of organocopper and cuprate reagents remain unclear.20 One can only speculate that racemization processes for charged cyclic cuprate species are unavailable for cyclic neutral copper(I) reagents in 1,4-addition reactions.²¹ The racemization of acyclic copper(I) reagents may be related to a lower energy barrier toward pyramidal inversion; however, the actual mechanism is unknown.

Asymmetric synthesis using the organocopper reagents can be realized. For example, β -keto ester 13 is similar to a known intermediate in the synthesis of $(-)$ -methyl nonactate.22 Hydrogenation of **5a** and direct conversion of the ester to nitrile 12²³ was accomplished in 95% overall vield. A modified Blaise reaction²⁴ then provided 13 in **85%** yield (54% overall yield from methyl 3-hydroxybutyrate). **An analogous** gemdimethylketal derivative **has** been converted to $(-)$ -methyl nonactate in two steps.²²

Acknowledgment. B.D.G. thanks the Burroughs Wellcome Fund for fellowship support. **R.J.L.** thanks American Cyanamid for an American Cyanamid Academic Award (1989).

Supplementary Material Available: Complete **spectral** and analytical data for **all** new compounds (3 pages). Ordering information is given on any current masthead page.

(24) Kishi, Y.; Hannick, S. M. J. Org. Chem. 1983, 48, 3833-3835.

Highly Stereoselective S_E' Additions of α-Alkoxy Allylstannanes to Chiral Aldehydes. Synthesis of a C-1-C-9 Subunit of Tylonolide

James **A.** Marshall* and Dmitry **V.** Yashunsky

Department of Chemistry and Biochemistry, The University of South Carolina, Columbia, South Carolina 29208 Received June 24, 1991

Summary: The racemic a-alkoxy allylic stannane **RS4** adds to the **2S** aldehyde **24** to **afford** the homoaldol adduct **26** (45%) derived exclusively from the **S** enantiomer **84** along with isomerized (R) - γ -alkoxy allylstannane 26 of *>80%* ee *(50%)* and unreacted aldehyde (40%). Use of the nonracemic α -alkoxy allylstannane 28 (1:1 mixture of diastereomers) in excess **leads** to the homoaldol adduct **29,** which is transformed in two steps to lactol ether **31,** an intermediate in Nicolaou's synthesis of 0-micinosyl tylonolide.

We have shown that enantioenriched α -alkoxy allylic stannanes undergo stereospecific anti S_E' additions to achiral aldehydes to afford homoaldol products I1 and I11 in high yield.¹ With simple unhindered aldehydes the syn E diastereomer **I1** is favored, whereas certain intramolec-

ular applications lead to the **syn** *2* isomer I11 **as** the major The present report describes preliminary

⁽²⁰⁾ For lead references to mechanitic studies *we* **refs 3 and 18.**

 (21) The addition of cyclic higher order cyano α -alkoxyorganocuprates derived from glycosyl stannanes to epoxides with retention of configuration has recently been reported: Prandi, J.; Audin, C.; Beau, J.-M. *Tetrahedron Lett.* **1991,** *32,* **769-771.**

⁽²²⁾ Deechenaux, P.-F.; Jacob Guihd, **A.** *Helo. Chim Acta* **1990,**

^{73,1861-1864. (23)} Weinreb, S. M.; Wood, J. **L.; Khatani, N. A.** *Tetrahedron Lett.* **1979,4907-4910.**

⁽¹⁾ Marshall, J. A.; Gung, W. Y. Tetrahedron 1989, 45, 1043.
(2) Marshall, J. A.; Gung, W. Y. Tetrahedron Lett. 1988, 29, 1657.
Marshall, J. A.; Gung, W. Y. Tetrahedron Lett. 1988, 29, 3899. Marshall, J. **A.; Markwalde2: A.** *Tetrahedron Lett.* **1988,29,4811.**

studies on additions of chiral α -alkoxy allylic stannanes to chiral nonracemic aldehydes leading to homoaldol products related to IV. Such compounds are of interest **as** precursors to macrolide natural products such as tylosin.3

We began our studies by examining additions of the (R) and *(S)-cy-alkoxy* stannanes **R4** and **54** to aldehyde **6.** The stannanes were readily prepared in ca. 90% ee through reduction of the acylstannane 2 with (S) - or (R) -BINAL-H **as** previously described.' The ee of each was determined by **'H** *NMR* **analysis** of the 0-methylmandelate derivative **R5** or **SS.4** Aldehyde **6** was prepared by reduction of the

MOM ether of (8)-(+)-methyl 3-hydroxy-2-methylpropionate (SMHP)⁵ with DIBAH in CH₂Cl₂ (89% yield). Reaction of aldehyde **6** with **R4** proceeded readily at -78 ^oC in the presence of BF_3 . OEt₂ to afford a ca. 11:1 mixture of (Z) - and (E) -enol ethers 7 and 10 in 85% yield. The

E product **1Oa ie** presumed to arise from the small amount of **54** present in the alkoxy stannane employed for the addition.⁶ It should be noted that the reaction is unusual in that (E) -enol ethers $(cf. \Pi)$ are generally formed as major products in additions of *&oxy* **stannanes** to simple achiral aldehydes.'

The stereochemistry of the adduct **7** at C* can be **as**signed on mechanistic grounds.⁶ Confirmatory experimental support for the carbinyl configuration comes from the ¹H NMR spectrum of the (R) - and (S) -O-methylmandelates **8 and 9.4** The relative OH/vinyl ether stereochemistry was established by conversion to the acetonide 13 after ozonolysis and reduction.'

J43 = **22** *Hr;* **53.4** - **9.7** *Hr)*

Addition of stannane **54** to aldehyde **6** proceeded sluggishly and produced a mixture of five products of which **10a** was the major adduct. Thus, **6/R4** represents the matched and **6/54** the mismatched pairing in these reactions.

With a view toward the synthesis of possible macrolide precursors such **as** IV, we next examined the addition of alkoxy stannanes **4** to aldehyde **24.** This, aldehyde **was** prepared from the THP ether of (R) - $(-)$ -methyl 3hydroxy-2-methylpropionate **(RHMP)6** via aldehyde **14 as** outlined in (Scheme I).

Addition of *racemic* alkoxy stannane **RS4** to the 28 aldehyde **24** (1:l) yielded a mixture comprised of the adduct **25** (&%), recovered aldehyde **24 (40%),** and the *optically actiue* y-alkoxy allylic stannane **26** *(50%).* The latter was shown to possess the R configuration by independent synthesis through BF_3 -promoted 1,3-isomerization

(6) In **all cases** examined to data we have found that electrophilic additions to chiral allylic stannanes such as 4 proceed by an exclusive anti S_B' pathway.^{1,2} Thus, the geometry of the double bond in the final product(s) can be used to assign the absolute stereochemistry at C3 of **the** product if the confiation at **C1** of the **stannane** is **known.** Becnuse the **ea** of allybtannane **R4** waa *ca.* **90%,** it is **estimated** that no **more** than **5%** of 10a could have arisen from **84.** Thus, the diaatereoeelectivity favoring **⁷is >201** and **10** is a **ca. 1:l** mixture of the two syn adducte **10.** and **lob.** the configuration at C1 of the stannane is known
tannane R4 was ca. 90%, it is estimated that no 1
uld have arisen from **S4**. Thus, the diastereor 20:1 and 10 is a ca. 1:1 mixture of the two syn ad
R¹
R¹
B₁
R²
anti

(7) To assuage the concerns of a referee that the Trost O-methyl-mandelate method may not be applicable to alcohols such as 7, we per-formed the following conversion:

 $J_{2,3}$ = 2.2, $J_{3,4}$ = 10.1 Hz

⁽³⁾ For previous synthetic work in this area, see: (a) Tatsuta, K.;
Amemiya, Y.; Kinoshita, M. Tetrahedron Lett. 1981, 22, 3997. (b) Nicolaou, K. C.; Pavia, M. R.; Seitz, S. P. J. Am. Chem. Soc. 1982, 104, 2030.
(c) Griec **1982,104,6781.** (d) Masamune, **S.;** Lu, L. D-L.; Jackson, **W.** P.; **Kaiko,** T.; Toyoda, T. J. *Am. Chem. SOC.* **1982, 104, 5623. (e)** Tanaka, T.; Oiknwa, Y.; Hamada, T.; **Yonumitau,** *0. Chem. Phorm. Bull.* **1987,35, 2219.** *(0* Evans, D. **A.** *Aldrichimico Acto* **1982,16, 23.**

⁽⁴⁾ Troclt, B. M.; Belletire, J. L.; Godleaki, **5.;** McDo **al, P.** G.; Balkovec, J. M.; Baldwin, J. J.; Christy, M. E.; Ponticello, G. S.; Varga, S. L.; *Springer, J. D. J. Org. Chem.* 1986, 51, 2370.

⁽SrThi ester waa purchased from Aldrich Chemical Company, Milwaukee, **WI.**

Scheme I

of authentic (R) - α -alkoxy stannane **R4** of $\sim 90\%$ ee.⁸ Thus, the α -(S) aldehyde 24 shows a remarkable affinity for the (S)-stannane **S4** to the virtual exclusion of **R4**. Recalling that the α -(S) aldehyde 6 is matched with the (R) -stannane **R4**, it must be concluded that the β -silyloxy substituent of aldehyde **24** plays a major role in controlling the enantiomeric pairing of the reactants.

The stereochemistry of adduct **25** was confirmed **by** lH NMR analysis of the cyclic acetonide **27.**

Additional confirmation of the foregoing stereochemical assignmenta **was** secured **by** the synthesis of lactol ether **31,** a **C-1** to **C-9** subunit that **was** employed by Nicolaou in **his** synthesis of 0-micinoeyl tylonolide.8b Alkoxy **stan**nane **28,** a **1:l** mixture of diastereoisomers, was prepared in a nine-step sequence from the TBS ether of SHMP.⁵ Addition of **2.5** equiv of this stannane to aldehyde **24 af**forded the adduct **29** in **79%** yield and recovered stannane the primary **TBS** ether followed by treatment with methanolic p-TsOH gave the lactol methyl ether **31,** identified by comparison of the 'H NMR and infrared

These findings show that $S_{\mathbb{E}}'$ additions of chiral α -alkoxy allylstannanes to chiral aldehydes represent a workable new convergent approach to precursors of important **16** membered macrolides. The contrasting stereomatching of the α -(S) aldehydes 6 and 24 with the (R) - and (S) stannanes **R4** and **54,** respectively, would not be expected from simple transition-state models.' However, **both** adducts 7 and 25 result from anti S_E' addition in line with prior examples and both derive from addition in the Cram-Felkin-Ahn sense, **as has** previously been **observed** with achiral allylstannanes.⁹ Additional studies are in progress to probe the effect of β -alkoxy stereocenters on the double **diastereodifferentiation** of such additions.

Acknowledgment. Support for this work was provided by research **grant** CHE-8912745 **from the** National Science Foundation. We are grateful to Professor **K. C.** Nicolaou for providing spectral data for compound **31.**

Supplementary Material Available: Experimental details and 'H NMR for prepared compounds (40 pages). Ordering information is given on any current masthead page.

⁽⁸⁾ Marshall, J. A.; Welmaker, G. S.; Gung, B. W. J. Am. Chem. Soc.
1991, 113, 647. Marshall, J. A.; Welmaker, G. S. Tetrahedron Lett. 1991, **32,2101. (9) Cf. Keck, G. E.; Abbott, D. E.** *Tetrahedron Lett.* **lSS4,&5, 1889.**